0=-16t^2+505

Simple and best practice solution for 0=-16t^2+505 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+505 equation:



0=-16t^2+505
We move all terms to the left:
0-(-16t^2+505)=0
We add all the numbers together, and all the variables
-(-16t^2+505)=0
We get rid of parentheses
16t^2-505=0
a = 16; b = 0; c = -505;
Δ = b2-4ac
Δ = 02-4·16·(-505)
Δ = 32320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32320}=\sqrt{64*505}=\sqrt{64}*\sqrt{505}=8\sqrt{505}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{505}}{2*16}=\frac{0-8\sqrt{505}}{32} =-\frac{8\sqrt{505}}{32} =-\frac{\sqrt{505}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{505}}{2*16}=\frac{0+8\sqrt{505}}{32} =\frac{8\sqrt{505}}{32} =\frac{\sqrt{505}}{4} $

See similar equations:

| 3x2-2x=0 | | -2(a+4)=-8 | | 28r=896 | | (x-4)^2-16=0 | | 4x+.5(4x+12)=2(4x+3) | | 2/3x^2-5=13 | | 42-x=6x | | (X-2)-2=6-2(x+1) | | 20p+35p=384.45 | | 2/3x+5=8 | | (x-4)^2=16 | | -(1-5x)+8=-17+2 | | -37(14x)+28(21x)=|72-72|+|-166+96| | | 6(x+1)=5(6x+6) | | 130=13v | | X2+6-5x=0 | | 6y-8=-2 | | -2(8v+3)-1=-136 | | 21=x/5+6 | | 3x^2+31=74 | | 6y-8=-8 | | 2(5x+17)=10x+34 | | f+5=84 | | m-15/1=-3 | | 3p-3=2(12+4p)-7 | | 3(2x-10)/2=2(x-3) | | 7x/9-8=x | | -2-3x=74 | | 6w=-7/3 | | 3v²-v=0 | | 4w+8.2=9.8w-2.8 | | -18=-4y+10 |

Equations solver categories